

Design and Evaluation of Service Robot's Proactivity in Decision-Making Support Process

Zhenhui Peng, Yunhwan Kwon, Jiaan Lu,

Ziming Wu, Xiaojuan Ma

CHI 2019

Service Robot – Support Human Decision-Making

Role examples

- Shop assistants (Canda et al., 2009)
- Receptionists (Lohse et al., 2014)

Previous work focuses on

• Question answering algorithm (Johannes et al., 2015)

Gap: manner of service

- Human proactivity (Grant et al., 2008)
- Affect worker's performance (Crant et al., 2000)

Source:

https://www.japantimes.co.jp/news/2014/12/01/business/tec h/softbanks-pepper-robot-debuts-coffee-machine-salesmanbic-camera/#.XMAfzej7SUk

Possible effects of robot's manner

- On users' perceptions (Sun et al., 2017)
- On users' behaviors (Takayama et al., 2009)

Anticipation-autonomy robot policy framework

- Principle: *high-, medium-, low*-proactivity
- Behavior policies in a decision-making support (DMS) process

Within-subject, Wizard-of-Oz experiment

- How people perceive and interact with robots of different proactivity
- Insights into designing robot's way of behaving

Definition: (derived from Grant et al., 2008)

Anticipatory action that robots initiate to impact themselves and/or others

- Anticipation Assumption on human's next action
- Initiation of action System **autonomy** (Sheridan et al., 1978)

Definition: (derived from Grant et al., 2008)

Anticipatory action that robots initiate to impact themselves and/or others

- Anticipation Assumption on human's next action
- Initiation of action System **autonomy** (Sheridan et al., 1978)

Definition: (derived from Grant et al., 2008)

Anticipatory action that robots initiate to impact themselves and/or others

- Anticipation Assumption on human's next action
- Initiation of action System **autonomy** (Sheridan et al., 1978)

Definition: (derived from Grant et al., 2008)

Anticipatory action that robots initiate to impact themselves and/or others

- Anticipation Assumption on human's next action
- Initiation of action System **autonomy** (Sheridan et al., 1978)

A Structured DMS Process

High-proactivity Robot Behavior Policy

- Strong assumptions, actively offer help
- *High* autonomy

Medium-proactivity Robot Behavior Policy

- Some assumptions, let user verify them
- *Medium* autonomy

Low-proactivity Robot Behavior Policy

- No assumptions, need user to tell what they want
- Low autonomy

Experiment to Evaluate the Effects

Settings

- Shoe shopping
- Robot assistant
- Laptop for browsing online category

Hypotheses

- Appropriateness
- Helpfulness

Behavior Analysis

- Turn-taking behaviors
- Purpose of users' turn
- Attitudes to recommended item

Three conditions

• *High-, medium-, low-*proactivity

Tasks

- Buy a pair of suitable shoes for a persona
- Reason needed
- Counterbalanced

Participants

- 36 (avg. age: 23.75)
- Gender-balanced
- ~ 40 mins / person

Persona	Shoe type	Color	Occasior	1
Men	Oxfords	Black or Brown	Dress or (Casual
Women	Heels	Black or Beige	Dress or (Casual
Teens	Sneakers	Black or White	Skate or F	Runnin
Friendly Clever	Motivations		Personality	
Go-Getter	Fear		Introvert	Extrover
	Power		Analytical	Creative
Age: 32 Work: Software Developer	Social		Loyal	Fickle
Family: Single Location: San Jose, CA Character: The Computer N	Nerd		Passive	Active
	Goals To cut down on unhe To measure multiple 	Goals To cut down on unhealthy eating and drinking habits To measure multiple aspects of life more scientifically To set goals and see and make positive impacts on his life 		nels
100 CO.	Frustrations		Email	_
-	Unfamiliar with weara Saturated tracking ma Manual tracking is too	arket	Traditional Ads	
"I feel like there's a smarter me to transition into a hea lifestyle."	Olark is a systems softwork past couple years, has b	rare developer, a "data junkie" and for the been very interested in tracking aspects mance. Clark wants to track his mood,	Brands	

Experiment Details

Wizard-of-Oz

- Infer intentions
- Trigger robot responses
- Button-based interface

Data Collection

- Questionnaires
- Post-study interview
- Video recording

SETTING				PROCESS		
Proactivity	 high 	medium	low		greet	
Task	men	women	teens	·		
			(51)	direct help	need help?	respond
PREFERENCE			(J)		wait	
Color	black	brown	\bigcirc	direct reco	which color	which index
Occasion	dress	casual	(52)		which occas	reco
Merely index					reco	
				(
			(53)	direct justify	need justify?	
HISTORY		1 - 15 - 8 -	\bigcirc	features		good words
				,		
EVENT HANDLE	*		(54)	sense positive	like or not?	positive
		~	34	sense negative	positive	negative
no knowledge	Not sure	No info			negative	
simple answer	Of course	Sure	Yes			
transition	Ok, I see	Just a second	1		thanks, end	

Robot's Script Samples for Justification

- Modified from shoppers' reviews
- Test all the scripts in a pilot study

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

- Least appropriate, though it can provide rich information
 Medium-proactivity robot
- Most helpful, more desirable to be served by it in the future *Low-proactivity robot*
- More user control, less interruptive

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

High-proactivity robot

• Least appropriate, though it can provide rich information

Medium-proactivity robot

- Most helpful, more desirable to be served by it in the future *Low-proactivity robot*
- More user control, less interruptive

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

High-proactivity robot

• Least appropriate, though it can provide rich information

Medium-proactivity robot

- Most helpful, more desirable to be served by it in the future *Low-proactivity robot*
- More user control, less interruptive

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

- Least appropriate, though it can provide rich information
 Medium-proactivity robot
- Most helpful, more desirable to be served by it in the future *Low-proactivity robot*
- More user control, less interruptive

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

- Least appropriate, though it can provide rich information
 Medium-proactivity robot
- Most helpful, more desirable to be served by it in the future *Low-proactivity robot*
- More user control, less interruptive

Figure 4: Means and standard errors of the user perception of the robots in terms of appropriateness (left) and helpfulness (right) on a 7-point Likert scale (+ : .05 , * : <math>p < .05, ** : p < .01).

- Least appropriate, though it can provide rich information
 Medium-proactivity robot
- Most helpful, more desirable to be served by it in the future
 Low-proactivity robot
- More user control, less interruptive

Results – on User Behaviors

Table: Average occurrences of users' behaviors during interaction

Theme	Turn-taking behaviors		
Category	Initating the turn	Competing for the turn	
Code example	(Robot is waiting) "I have a friend [] do you have any recommendation?"	(Robot is justifying the shoes) "No, I don't want this one"	
High	2.3 (2.02)	2.5 (2.09)	
Medium	3.0 (2.62)	2.0 (1.84)	
Low	6.2 (5.09)	0.7 (0.97)	

Adapt turn-taking behaviors to robots' manner

Results – on User Behaviors

Table: Average occurrences of users' behaviors during interaction

Theme	Purpose of users' turns		
Category	Making requests	Asking questions	
Code example	"Could you recommend me another pair?"	"Do you think it is suitable for a very busy woman?"	
High	2.5 (2.73)	0.8 (1.42)	
Medium	3.7 (3.09)	1.0 (2.16)	
Low	4.5 (3.65)	1.5 (2.22)	

More control over the conversation in *low* condition

Results – on User Behaviors

Table: Average occurrences of users' behaviors during interaction

Theme	Attitudes to recommended item		
Category	Positive	Negative	
Code example	(Robot gives recommendation) "Okay, I like this pair."	(During recommendation) "Give me another pair."	
High	2.2 (2.25)	1.8 (1.65)	
Medium	3.3 (2.35)	3.1 (3.08)	
Low	0.8 (1.02)	0.8 (0.95)	

Engage better in *medium* condition

Some Insights

Robot should maintain a mental model of human

- Things important for decisions: e.g., goal, preference, knowledge
- More considerate to verify the model before taking actions

Robot should express its capability

- For correct expectation
- Interactively help user obtain an correct metal model of robot, e.g., show uncertainty, explain the cause of communication failure, etc.

Robot behavior policy should be adaptive

- Context dependent, e.g., familiar with the items or not, in a hurry or not, etc.
- Sensitive to users' emotional reaction

Future Work

Test the generality of robot's proactivity design

- On diverse tasks
- In real-world settings
- With different user population

Consider different aspects of interaction dynamics

• E.g., action timing and robot's tones

Automate robot anticipation

- Multi-modality algorithm, e.g., gaze, face expression, gesture, head pose, etc.
- Decision-makers' mental model

Summary

Service robot in decision-making support (DMS) Define robot's proactivity in DMS settings

- Anticipation-autonomy policy framework
- *High-, medium-, low*-proactivity

Evaluations

- Perceptions: appropriateness and helpfulness
- User behaviors

Future design considerations for robot's manner

- Infer user's mental model
- Express its capability
- Adapt policy to context and user emotional reactions

Questions?

Zhenhui Peng

Yunhwan Kwon Jiaan Lu Ziming Wu Xiaojuan Ma

http://hci.cse.ust.hk/ Search Us: HCI HKUST

Contact me: <u>zpengab@connect.ust.hk</u>